BA SANGAM COLLEGE
 YEAR 13
 PHYSICS
 WORKSHEET 4

1. Which of the following is a requirement for conservation of angular momentum?
A. The net force on the body is zero.
B. The net torque on the body is zero.
C. The kinetic energy of the body is zero.
D. The net momentum of the body is zero
2. Which of the following rotational quantities is analogous to force in linear motion?
A. Inertia
B. angle in radians
C. angular speed
D. Torque
3. If a net torque is applied to an object, then that object would experience
A. an angular acceleration.
B. a constant angular speed.
C. a constant moment of inertia.
D. an increasing moment of inertia
4. A group of students measured the length of a glass slide as $\mathbf{6 . 8} \mathbf{8 . 1} \mathbf{c m}$ and the width as $2.6 \pm 0.1 \mathrm{~cm}$. Calculate the area of the glass slide with the correct absolute uncertainty.
5. Show that the equation $\boldsymbol{x}=\frac{1}{2} \boldsymbol{g} \boldsymbol{t}^{\mathbf{2}}$ is dimensionally consistent.
6. Two quantities x and y are related by the equation $\mathrm{y}=0.25 \mathrm{x}^{2}$.
(i) Express the equation $\mathrm{y}=0.25 \mathrm{x}^{2}$ in logarithmic form that can be used to draw a straight line graph.
(ii) If a graph of $\log \mathbf{y}$ versus $\log \mathbf{x}$ is drawn, find the values of the gradient and y intercept.
7. Obtain a linear graph for the relation $\boldsymbol{m}=\boldsymbol{K} \boldsymbol{b}^{\boldsymbol{n}}$
8. A 6 kg mass rests on a 30° inclined plane. The coefficient of friction between the mass and the plane is 0.1 .

When a 4 kg mass is connected via a string and pulley as shown, the masses start to move.
a. Calculate the force of friction on 6 kg mass.
b. Hence determine the acceleration of the system.
9. A car rounds an unbanked curve of radius 40 m without skidding at a speed of $15 \mathrm{~m} / \mathrm{s}$. What is the coefficient of friction between the tires and the road?
10. The flywheel of a motor has a mass of 500 kg and a moment of inertia of $575 \mathrm{kgm}^{2}$. The motor develops a constant torque of 210 Nm as the flywheel starts from rest.
a. What is the angular acceleration of the flywheel?
b. What will be its angular velocity after making four revolutions?
c. How much time was taken to make the four revolutions?
11. A barrel of moment of inertia, $\left(\mathrm{I}=\mathrm{mr}^{2}\right)=0.6 \mathrm{kgm}^{2}$ about its axis is rolled down a slope of height 4 m as shown below.

The barrel has a mass of 15 kg .
a. What is the total energy at the top of the slope?
b. Determine the linear and the angular velocity of the barrel at the foot of the slope?
c. Calculate the translational and the rotational kinetic energy at the foot of the slope?

