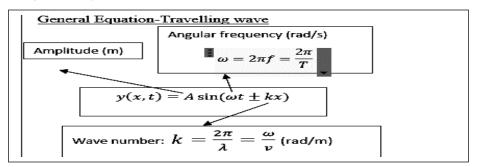
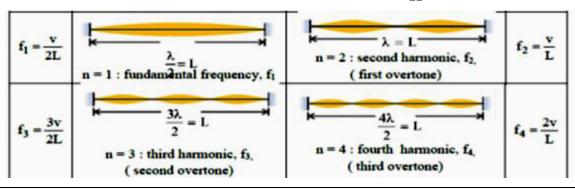
SUVA SANGAM COLLEGE

YEAR 13


PHYSICS

WORKSHEET 9

Strand 3 P13.3	Waves
Reference from Text	Pg 66 to 85


Questions

No. | CONCEPT IN BRIEF:

- 1. A wave travelling through a string along the x-axis has the equation: $y = 0.03\sin(0.3x + 5t)$.
 - (a) State the direction of wave.
 - (b)
 - (c) Calculate the value of:
 - (i) Amplitude (A)
 - (ii) Frequency (f)
 - (iii) Wavelength (λ)
 - (iv) Velocity of wave (v)

CONCEPT IN BRIEF: Standing Waves in a string $f_n = \frac{nv}{2L}$

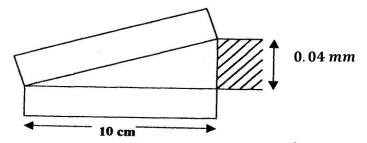
2. The diagram shows a string of length 2 m and mass 20 g attached to a tuning fork which is vibrating at a frequency of 400 Hz. The tension applied to the string causes it to vibrate in its

fourth harmonic mode.

- a) Draw the pattern that would be observed for this mode.
- b) Calculate the wavelength of the standing wave formed in the string.
- c) Calculate the speed of the wave along the string.

CONCEPT IN BRIEF: Interference bands in reflected light can be observed by illuminating a wedge shaped film

$$\Delta x = \frac{L\lambda}{2t}$$


 $\Delta x = distance between dark fringes$

 $L = length \ of \ air \ wedge$

t = thickness

 $\lambda = wavelength$

3. An air wedge is formed by two 10 cm long glass slides placed in contact at one end and separated by a 0.04 mm thick paper at the other.

Find the distance between the adjacent dark fringes formed as a result of the interference of light of wavelength 700 nm incident on it.