PENANG SANGAM HIGH SCHOOL

P.O.BOX 44, RAKIRAKI

LESSON NOTES

WEEK 18

Year/Level: 13A/B

Subject: Chemistry

Strand 3	Reactions
Sub Strand 3.2	Thermochemistry
Content	By the end of this lesson students should be able:
Learning	Define bond energy.
Outcome	Identify the uses of bond energies.
	Perform calculations on bond energy using the bond energy data.

Bond Energy/ Bond Enthalpy

* Amount of energy required to break a chemical bonds to give uncharged fragments. <u>Note:</u>

- * For bonds to be broken , energy is supplied---an endothermic process(Δ H-positive)
- * Formation of bonds releases energy----an exothermic process(Δ H- negative)
- The bond energies depend on:
- 1. Bond polarity
 - * As bond polarity increases the bond energy also increases.
- 2. Bond Order

Bond order = <u>number of shared electrons</u> 2

Example:

Compound	Bond order	
C-C	1	
C=C	2	
C = C	3	

 \star As bond order increases bond energy also increases.

3. Bond Strength

- * Related to bond length.
- * As bond length decreases bond strength increases thus bond energy increases.

Uses of Bond Energy

* Indicates whether the bond is single, double or triple.

Sangam Education Board - Online Resources

- * Determines the chemical properties, bonding etc.
- \star To calculate the enthalpy change in a chemical reaction.

Note:

Bond energies do not vary from compound to compound.

 ΔH° = total energy required to break bonds + total energy released in bond formation

Example:

Use the bond energy given below to predict the heat of reaction in kJ for the following reaction.

$H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl$

Bond Energy:					
H-H = 436kJ/mol	CI-CI = 242kJ/mol	H-Cl = 431kJ/mol			

<u>Solution</u>

Ensure that the equation is balanced.

H-H + CI-CI 436 242 678 862

ΔH°= Bonds broken – bonds formed = 678-862 = -184kJ exothermic rxn

Exercise

1. Ammonia is obtained commercially according to the equation given below.

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

(a) Calculate the enthalpy change for the above reaction.

Bond energies in kJ/mol					
N-N	Н-Н	N-H	N≡N		
163	436	391	945		

b. Give the ΔH°_{f} (NH_{3(g)}) and indicate whether the production of ammonia is endothermic or exothermic.

Sangam Education Board – Online Resources