
1

WORKSHEET 16

 School: Ba Sangam College Year / Level: 11
Subject: Computer Studies Name of Student: ____________

Five Generations of Programming Languages

Languages are described as occurring in "generations," from machine languages to natural languages.

There are five generations of programming languages. These are:

1. Machine Languages: The First Generation

We mentioned earlier that a byte is made up of bits, consisting of 0‘s and 1‘s. These 0‘s and 1‘s may correspond to

electricity's being on or off in the computer. From this two-state system have been built coding schemes that allow us to

construct letters, numbers, punctuation marks, and other special characters. Examples of these coding schemes, as we saw,

are ASCII and EBCDIC.

Data represented in 0‘s and 1‘s is said to be written in machine language. To see how hard this is to understand, imagine if

you had to code this:

111100100111001111010010000100000111000000101011

Machine languages also vary according to make of computer-another characteristic that makes them hard to work with.

2. Assembly Languages: The Second Generation

Assembly languages have a clear advantage over the 0‘s and 1‘s of machine language because they use abbreviations or

mnemonics. These are easier for human beings to remember. The machine language code we gave above could be expressed

in assembly language as

ADD 210 (8, 13), 028 (4, 7)

This is still pretty obscure, of course, and so assembly language is also considered low-level.

3. High-Level Procedural Languages: The Third Generation

People are able to understand languages that are more like their own (e.g., English) than machine languages or assembly

languages. These more English-like programming languages are called "high-level" languages.

Procedural languages are programming languages with names like BASIC, Pascal, C, COBOL, and FORTRAN. They are

called "procedural" because they are designed to express the logic - the procedures – that can solve general problems.

 Compilers and Interpreters

For a procedural language to work on a computer, it must be translated into machine language so that the computer

understands it. Depending on the language, this translation is performed by either a compiler or an interpreter.

A compiler converts the programmer's procedural language program, called the source code, into a machine language code,

called the object code. This object code can then be saved and run later.

An interpreter converts the procedural language one statement at a time into machine code just before it is to be executed.

No object code is saved. An example of a procedural language using an interpreter is the standard version of BASIC.

Strand 3 – Programming

Sub strand 3.1 Programming

Content Learning Outcome Describe generation of programming language

3055 BA SANGAM COLLEGE
PH: 6674003/9264117 E-mail: basangam@connect.com.fj

2

Activity
1. Differentiate between machine language and assembly language (2marks)

2. Why people prefer high level procedural language? (2marks

3. What is a compiler? (2marks

4. What is an interpreter? (2marks
