

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

Worksheet 16

School: Ba Sangam College	Year / Level: <u>13</u>
Subject: Mathematics	Name of student:

Strand	6 - Algebra
Sub strand	6.4 – Partial Fractions
Content Learning Outcome	Decompose rational functions into a sum of simple functions

Partial Fractions - Quadratics Which Cannot be factorized Ref. Yr 13 Mathematics Textbook pg. 144 - 152

Quadratic irreducible factor	$(x^2 + 4)$	$\frac{Ax+B}{(x^2+4)}$
---------------------------------	-------------	------------------------

Example 1

Express $\frac{x^2-1}{(x^2+1)(x-2)}$ as a sum of partial fractions.

$$\frac{x^2-1}{(x^2+1)(x-2)} = \frac{Ax+B}{(x^2+1)} + \frac{C}{(x-2)}$$

$$\frac{x^2 - 1}{(x - 2)(x^2 + 1)} = \frac{(x - 2)(Ax + B) + C(x^2 + 1)}{(x - 2)(x^2 + 1)}$$

Since the denominator on both sides is same, we can equate the numerators.

$$x^{2}-1=(x-2)(Ax+B)+C(x^{2}+1)$$

Let
$$x = 2$$
,
 $2^2 - 1 = (2 - 2)(A \times 2 + B) + C(2^2 + 1)$ | Let $x = 0$,
 $0^2 - 1 = (0 - 2)(A(0) + B) + C(0^2 + 1)$
 $-1 = -2B + C$
 $C = \frac{3}{5}$ | $-1 = -2B + \frac{3}{5}$
 $B = \frac{4}{5}$

Let
$$x = 1$$
,
 $(1)^2 - 1 = (1 - 2)(A + B) + C(1^2 + 1)$
 $0 = -1(A + \frac{4}{5}) + 2(\frac{3}{5})$
 $= -A - \frac{4}{5} + \frac{6}{5}$
 $0 = -A + \frac{2}{5}$
 $A = \frac{2}{5}$

Hence
$$\frac{x^2-1}{(x^2+1)(x-2)} = \frac{2x+4}{5(x^2+1)} + \frac{3}{5(x-2)}$$

Example 2

Express $\frac{2x+1}{(x-2)(x^2+1)}$ as a sum of partial fractions.

Make denominators same

$$\frac{2x+1}{(x-2)(x^2+1)} = \frac{A}{x-2} + \frac{Bx+C}{(x^2+1)} = \frac{A(x^2+1)+(Bx+C)(x-2)}{(x-2)(x^2+1)}$$

Since the denominator on both sides is same, we can equate the numerators

$$2x+1 = A(x^2+1)+(Bx+C)(x-2)$$

Let
$$x = 2$$
,
 $2(2)+1 = A((2)^2+1)+(B(2)+C)(2-2)$ | Let $x = 0$,
 $2(0)+1 = 1((0)^2+1)+(B(0)+C)(0-2)$
 $5 = 5A \implies A = 1$ | $1 = 1-2C \implies C = 0$

Let
$$x = 1$$
,
 $2(1)+1 = A((1)^2+1)+(B(1)+C)(1-2)$
 $\Rightarrow 3 = 2A-B-C \Rightarrow 3 = 2(1)-B+0$ (recall that $A = 1$ and $C = 0$)
 $3 = 2-B \Rightarrow B = -1$

Therefore

$$\frac{2x+1}{(x-2)(x^2+1)} = \frac{1}{x-2} - \frac{x}{(x^2+1)}$$

ACTIVITY (3 marks each)

1. Express as a sum of partial fractions

$$\frac{-x-2}{x(x^2+1)}$$

2. Express as a sum of partial fractions

$$\frac{10x + 24}{(x-3)(x^2+9)}$$