

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 18

School: <u>Ba Sangam College</u>	Year / Level: <u>12</u>			
Subject: Mathematics	Name of Student:			
Strand	4 – Coordinate Geometry			
Sub strand	4.1 – Applications Of Coordinate Geometry			
Content Learning Outcome	Explore and apply the concepts of coordinate geometry			

Coordinate Geometry

(Ref: Year 12 Mathematics Pg 133 - 138)

PARALLEL LINES

Note: Parallel lines have the same slope/gradient. If m_1 is gradient of the first line and m_2 is the slope of the second line, then it is parallel lines if $m_1 = m_2$

EXAMPLE 1: Find the equation of the line parallel to 3x + 2y - 7 = 0 and passing through the point (2, 4).

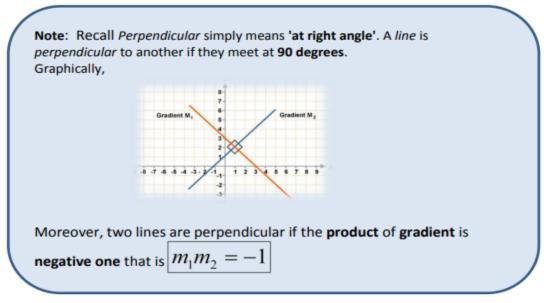
Answers:

Key words / sentences

• line parallel to
$$3x + 2y - 7 = 0$$
:

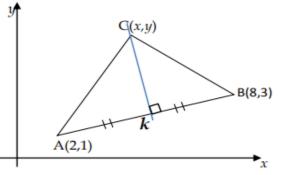
Make y the subject to find m

$$3x + 2y - 7 = 0$$


$$y = \frac{-3x + 7}{2} = \frac{-3x}{2} + \frac{7}{2}$$

$$m_1 = \frac{-3}{2}$$

Thus $m = \frac{-3}{2}$


Note that parallel means same gradient.

- given a point (2, 4) \bigcirc (x_1, y_1) and m = $\frac{-3}{2}$, Equation of the line is: $y - y_1 = m(x - x_1)$ Substitute the values provided, $y - 4 = \frac{-3}{2}(x - 2)$
- Make y the subject $y - 4 = \frac{-3x}{2} + 3$ + 4 + 4 $\therefore y = \frac{-3x}{2} + 7$

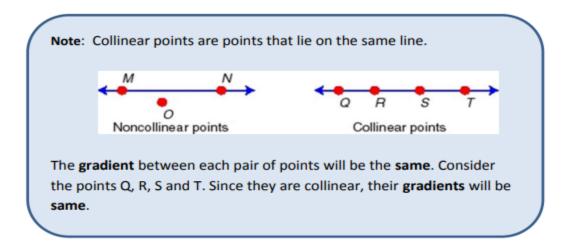
PERPENDICULAR LINES

EXAMPLE 2: The figure ABC below is an isosceles triangle.

- a) Find the gradient of line segment AB.
- b) Line k is a perpendicular bisector of the line segment AB. Determine the coordinates of the midpoint of the line segment AB.
- c) Write the equation of Line k.

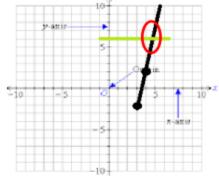
Answers:

- a) Gradient formula : $m = \frac{y_2 y_1}{x_2 x_1}$ A (2,1) \rightarrow (x₁,y₁) and B (8,3) \rightarrow (x₂,y₂) Substitute the values provided $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{8 - 2} = \frac{2}{6} = \frac{1}{3}$
- b) Coordinates of the midpoint


 $\therefore m = \frac{1}{3}$

$$M(x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$M(x_m, y_m) = \left(\frac{2 + 8}{2}, \frac{3 + 1}{2}\right) = \left(\frac{10}{2}, \frac{4}{2}\right)$$
$$\therefore (x_m, y_m) = (5, 2)$$

- c) Midpoint will be the first point $(x_1, y_1) \rightarrow (5,2)$
- Since perpendicular: $m_1m_2 = -1$ $m_2 = \frac{-1}{m_1} = -1 \div \frac{1}{3} = -3$
- The equation of a line:


$$y - y_1 = m(x - x_1)$$

 $y - 2 = -3(x - 5)$
 $y = -3x + 15 + 2$
∴ $y = -3x + 17$

COLLINEAR POINTS

EXAMPLE 3: If points P (3,-2), Q (4,2) and R (x,6) are collinear, then find the value of *x*.

Graphically,

Find gradient of PQ

 $P(3,-2) \rightarrow (x_1, y_1) \& Q(4,2) \rightarrow (x_2, y_2)$ Use gradient formula:

$$m(\overline{PQ}) = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{2 - -2}{4 - 3}$$
$$\therefore m(\overline{PQ}) = \frac{4}{1} = 4$$

- **Collinear points** will lie on the same line, means **same gradient**. $\therefore m(\overline{PQ}) = m(\overline{QR}) = m(\overline{PR}) = 4$
- Consider points QR: $\begin{array}{l} Q(4,2) \rightarrow (x_1,y_1) \\ \text{ and } R(x,6) \rightarrow (x_2,y_2) \end{array}$ Substitute the given values

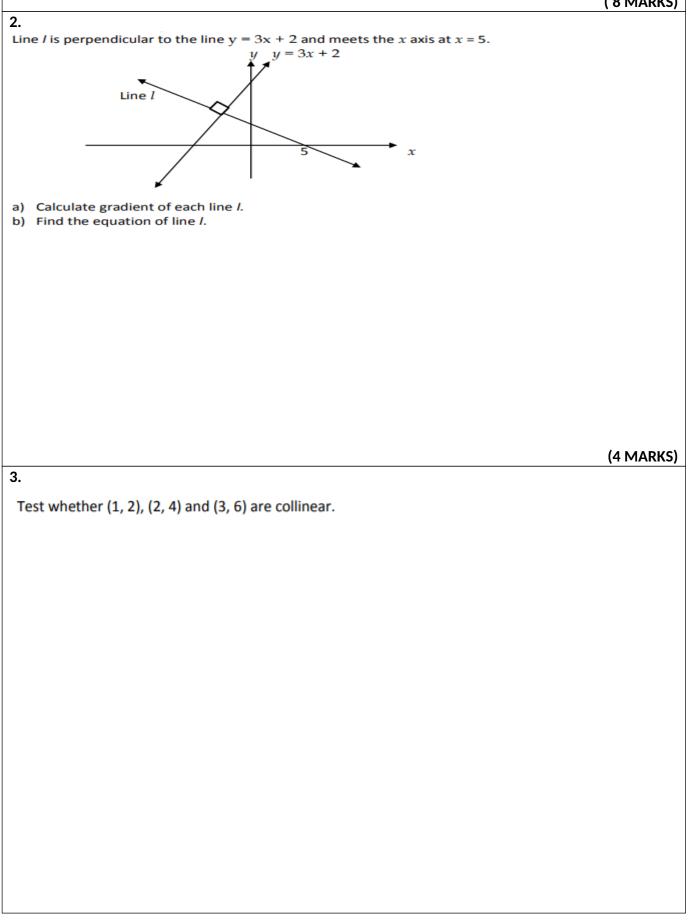
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$4 = \frac{6 - 2}{x - 4}$$

• Solve for x: you may use distributive law

4(x-4) = 44x-16 = 44x = 20x = 5Thus x = 5

ACTIVITY

1.


The following equations represent four straight lines.

(i)	3y + 4x = 2		(ii)	4y = 3x + 2
(iii)	3y + 4x = 2		(iv)	2 = -4x - 3y

a) Find gradient of each line.

- b) Which two lines are parallel? i.e. have same gradient
- c) Which two lines are perpendicular?

(8 MARKS)

(3 MARKS)

THE END