

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

-			
School: <u>Ba Sangam College</u>		WORKSHEET 18	
		Year / Level: <u>11</u>	
Sul	bject: <u>Mathematics</u>	Name of Student:	
Str	and 3 - COORDINATE GEOMETRY		
Sul	b strand	Gradient of a straight line	
Content Learning Outcome To find grad		To find gradient of two points	

GRADIENT OF STRAIGHT LINE

Objective: To find the gradient of two points or a line on a Cartesian plane

Let $A(x^1, y^1)$ and (x^2, y^2) be any two points on a straight line. The slope or the gradient

of the line AB can be calculated by the formula given below.

$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad or \quad m = \tan \theta \quad m \to gradient$$

Example 1

- a. Find the gradient of the line joining the points $A^{(2,1)}$ and $B^{(6,4)}$ in the diagram given on right
- b. Calculate the angle the line segment AB makes with the positive x-axis.

Solution

a)

|--|

$\boxed{\begin{array}{c}m = \tan \theta\\m = \frac{3}{4}\end{array}} \rightarrow$	$\frac{m = \tan \theta}{\frac{3}{4} = \tan \theta} \rightarrow \boxed{\tan^{-1}\left(\frac{3}{4}\right) = \theta} -$	$\rightarrow \boxed{\theta = 53 \cdot 13^{\circ}}$
---	--	--

Example 2

- a. Find the gradient of the line joining the points (1,3) and B(6,8).
- b. Calculate the angle the line segment AB makes with the positive x-axis.

Solution

a)

$\boxed{m = \frac{y_2 - y_1}{x_2 - x_1}} \rightarrow$	$m = \frac{8-3}{6-1} \rightarrow$	$m = \frac{5}{5} \rightarrow \boxed{m = 1}$]
---	-----------------------------------	---	---

$m = \tan \theta \rightarrow 1 = \tan \theta \rightarrow$	$\tan^{-1}(1) = \theta \rightarrow \boxed{\theta = 45^{\circ}}$
---	---

EQUATION OF STRAIGHT LINE

Objective: To find the equation of a linear functions in the form y=mx+c

b)

A line has an equation of the general form :

$$y^{=}mx^{+}c,$$

where $m^{=}$ gradient and $c^{=} y^{-}$ intercept

Example

Find the gradient of a line with the equation

$$5_X - 3_V + 2 = 0$$

Solution

$5_x - 3_y + 2 = 0$	Make y the subject
↓ ↓ 0 - 0	> Take y to other side
$5_X + 2 = 3_y$	Divide by 3
$\frac{5}{\frac{x}{3}} + \frac{2}{3} = \frac{3}{\frac{y}{3}}$	Cancel and simplify
$\int_{\frac{5}{3}x^{+}\frac{2}{3}} = y$	Gradient is coefficient of x
Ļ	

5	
$m^{-1}\overline{3}$	

Activity:

- 1. Give the equation of the line passing through (6, -4) with $m^{=3}$. (2 Marks)
- 2. Find the equation of the line passing through the points (2,4) and (-3,-6)? (2 Marks)