3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 16

SCHOOL: BA SANGAM COLLEGE		YEAR: 13	
SUBJECT: PHYSICS		NAMEOF STUDENT:	
	STRAND	5 - DIRECT CURRENT	
	SUB-STRAND	5.2 – Kirchoff's Laws	1
	LEARNING OUTCOME	To study about more complex circuits using Kirchoff's Laws	

Simple circuits are analysed using Ohm's law. More complex circuits containing several sources of emf and

Sangam Education Board – Online Resources

resistances are analysed using Kirchoff's laws.

4. Solve the equations simultaneously for the unknown quantities.

<u>Example</u>

Find the currents I_1 , I_2 and I_3 in the multi-loop circuit given.

SOLUTION

<u>Step 1</u>. Choosing junction *c* and applying the Kirchoff's first rule we get $I_1 + I_2 = I_{3. eq}(1)$

<u>Step 2.</u> The circuit has three loops but only two is needed, so let's take loops *abcda* and *befcb* and traverse in a clockwise direction

Loop abcda: $10 V - 6 I_1 - 2 I_3 = 0$

Loop befcb: $-14 \text{ V} + 6 \text{ I}_1 - 10 \text{ V} - 4 \text{ I}_2 = 0$

Loop befcb simplifies to - 24 V + 6 $I_1 - 4 I_2 = 0$

<u>Step 3</u>-We now have to use the equations 1, 2 and 3 and solve them simultaneously. Take equation 1 and substitute in equation 2.

 $10 - 6 I_1 - 2 (I_1 + I_2) = 0$

Step 4. We have to use the equations (3) and (4) and eliminate one of the variables.

Take equation (3) and divide throughout by 2. $12 - 3 I_1 + 2 I_2 = 0$ eq- (5)

Step 5. Add equation (5) to (4) to eliminate I₂, gives

(+)
$$12 - 3 I_1 + 2 I_2 = 0$$

(+)
$$10 - 8 I_1 - 2 I_2 = 0$$

$$22 - (11) I_1 = 0$$
 (11)
$$I_1 = 22 \downarrow I_1 = 2 A$$

<u>Step 6</u>. Substituting I_1 in (5) results in a value for I_2

 $12 - 3(2) + 2I_2 = 0, I_2 = -3A$

Step vii. Finally use equation (1) to calculate I₃

$$I_3 = I_1 + I_2$$
, $I_3 = -1 A$

The values for the currents are:

$$I_1 = 2A$$
 $I_2 = -3A$ $I_3 = -1A$

-The **negative** values of I_2 and I_3 indicate that the directions of the currents are **opposite** to that designated initially.

EXERCISE

Use the circuit in Figure 5.17 to answer the questions that follow.

- i. Calculate the values of I1, I2 and I3.
- ii. Find the potential difference between Points A and B.

Sangam Education Board – Online Resources