WEEK 18

PENANG SANGAM HIGH SCHOOL LESSON NOTES PHYSICS – Y13

STRAND: MECHANICS SUB-STRAND: ROTATIONAL DYNAMICS CONTENT LEARNING OUTCOME: To understand the concept of Angular Momentum and solve problems.

Angular Momentum

The diagram shows a point mass m moving at a speed V at a perpendicular distance r from point X.

The angular momentum, L, of the mass about the axis through X is the product of the linear momentum, p, and the perpendicular distance, r.

Eg 1

Calculate the angular momentum of a 2 kg mass moving in a circular path of radius 0.3 m at a constant speed of 5 m/s.

Eg 2

A point mass of 2 kg swings in a horizontal circle of radius 1 m at the end of a string of negligible mass. The mass completes 200 revolutions per minute. Find its angular momentum.

Angular Momentum of an object rotating about its own axis

SANGAM EDUCATION BOARD - ONLINE RESOURCES

The angular momentum, L, of the object about its axis is given by:

LI = W

L =angular momentum (kgm/s) I =inertia (kgm/s) W =angular velocity (rad/

Eg 1

The diagram below shows a wheel of inertia 2.8 kgm² rotating about its axis at 12 rad/s.

Calculate the angular momentum of the wheel.

<u>Eg 2</u>

Calculate the angular momentum of a solid cylindrical wheel of mass 5 kg and radius 0.3 m rotating at 6 rad/s.

<u>Eg 3</u>

Calculate the angular momentum of a solid sphere of mass 8 kg and radius 0.4 m rotating about its axis at 5 rev/s.

For the sphere, lmr^2_5 ².

Conservation of Angular Momentum

The total angular momentum of a system is always conserved if no resultant torque is acting on the system.

If $L_i = \text{initial angular momentu}$ and $L_f = \text{final angular momentu}$

then

 $L_{\#} =$

SANGAM EDUCATION BOARD - ONLINE RESOURCES

 \overrightarrow{A} disc of moment of inertia 8 kgm² rotating at 3 rad/s is brought into contact with a stationary disc of inertia 5 kgm². The two discs stick together and rotate with a common velocity, W.

Calculate the common angular velocity, W.

<u>Eg 2</u>

 \overline{A} ballet dancer of inertia 50 kgm² rotating at 5 rad/s, folds her arms, decreasing her inertia to 36 kgm².

a) Calculate the final angular velocity of the dancer.

b) Calculate the increase in kinetic energy of the dancer.

Linear	Rotational
S	q (sr = q)
V	W (V = W)
a	a (ar = a)
F	t
т	1
p	L
vy,aŧ+	w₩¢≠+ t
sveret $\frac{1}{2}$ 2	qv=++,tt $\frac{1}{2}$ 2
$v_{\mathcal{V}}^{2}$ as + 2	wijverege 2
Fma	ta=1
pmv	LI = W
<i>Κ</i> φ⊭ $\frac{1}{2}$ ²	$\mathit{KI}_{\mathit{R}}=rac{1}{2}~\mathit{w}^{2}$
WF s -′	W =tq
$F = \frac{Dp}{t}$	$t = \frac{DL}{t}$

Linear and equivalent Rotational quantities and formulas

SANGAM EDUCATION BOARD – ONLINE RESOURCES

SANGAM EDUCATION BOARD – ONLINE RESOURCES