PENANG SANGAM HIGH SCHOOL P.O.BOX 44, RAKIRAKI

LESSON NOTES

Subject: Basic Science

Year/Level: 9

Week 22

Strand	2: MATTER
Sub Strand	2.3 : REACTIONS
Content Learning Outcome	Investigate how elements and compounds are formed and describe interactions between elements

2.3.1 Elements, Ions and Compounds

Elements

- pure substance made up of only one type of a particle atom.
- ✤ Example:
 - \checkmark element iron is made up of iron atoms which are all alike .
 - \checkmark Sulphur is made of sulphur atoms which are all alike.
- Scientists use symbols to represent elements.
- * Most of the symbols are the first letters of the element's name.

Element	Symbol	Element	Symbol
Carbon	С	Iron	Fe
Oxygen	0	Zinc	Zn
Nitrogen	Ν	Copper	Cu
Hydrogen	Н	Aluminium	AI
Sulphur	S	Sodium	Na
Chlorine	CI	Calcium	Са

<u>Ions</u>

- When an element reacts during a chemical reaction, it can either lose or gain electrons.
- When it loses or gains an electron, what results or forms is an **<u>ion</u>**.
- All elements have equal number of protons which are positively charged and electrons which are negatively charged.

* Cation:

- ✓ element loses its electron(s) in a chemical reaction
- \checkmark has a positive charge on it.
- * Anion:
 - \checkmark element gains electron(s) in a chemical reaction
 - \checkmark has a negative charge on it.

Most metal elements lose electrons when they react while non- metal elements gain electrons.

Molecules

- * made up of two or more atoms of the same kind or of different kinds chemically combined together.
- Molecules exist in both elements and compounds.
- We write an oxygen molecule as O_2 .
- Hydrogen usually exists as H₂ molecules, nitrogen forms N₂ and ammonia exist as NH₃.

Models of some molecules

Hydrogen

oxygen

water

carbon dioxide

ammonia

Compounds

- substances which are made of more than one type of atom joined together.
- may be made by chemically combining two or more elements.
- may be decomposed (broken up) by the use of heat, electricity or by the action of other chemicals.
- represented using a chemical formula.
- formula of a compound shows the type of atoms present in the compound and how many of each atom.

Acids and Bases

- very important compounds in everyday life.
- defined by what they do.
- referred to as operational definition and specifically based on their properties.
- * Acids can be divided into two groups:
 - 1) <u>mineral acids</u> ones used commonly in the laborator
 - ones used commonly in the laboratory and in industries. They are known for their corrosive nature and must be handled with care
 - 2) <u>organic acids</u>. found in plants or animals.

Properties of Acids

- Most acids are corrosive ('burns' your skin) and react with many materials.
- All acids have a sour taste (e.g. lemons, vinegar). Do not detect acids by tasting them.
- Acids contain hydrogen ions (H^+) when dissolved in water and have pH less than 7.

- Acids turn blue litmus paper to a red colour.
- Aqueous solutions of acids are good electrical conductors.
- Acids react with alkalis to form salt and water.
- Dilute acid reacts with metals to produce hydrogen gas.
- Dilute acid reacts with carbonates to produce carbon dioxide gas.

Common Acids and their Uses

Acid	Formula	Uses
Acetic acid or	CH₃COOH	Preserving food and for cooking. Found in vinegar and used to be made by the
ethanoic acid		souring of wine
Citric acid	C ₆ H ₈ O ₇	Making health food. Found in many fruit and vegetables, particularly citrus and
Ascorbic acid	$C_6H_8O_6$	source of vitamin C.
Hydrochloric	HCI	Cleaning metallic surfaces before they are coated. Found in the stomach and
acid		called spirits of salts. A mixture of hydrochloric and nitric acids is known as "aqua
		regia'- literally 'royal water' because the mixture is the only substance that will
		dissolve gold.
Sulphuric acid	H ₂ SO ₄	Function as electrolyte in batteries, electroplating, making plastics and fertilizers.
Nitric acid	HNO ₃	Manufacture of nitrogen-based fertilizers and explosives.
Carbonic acid	H ₂ CO ₃	Very weak acid formed when carbon dioxide dissolves in water. When carbon
		dioxide in the air dissolves in rain, it dissolves in limestone (calcium carbonate)
Phosphoric acid	H ₃ PO ₄	Making fertilizers and inhibiting the rusting of iron.

Introduce a burning splint into a tube containing the gas. Hydrogen gas is identifies by a 'pop' sound.

Test for Carbon dioxide Gas

Pass some carbon dioxide gas through clear Limewater. Carbon dioxide is identified by the limewater turning 'milky' or by the formation of a white precipitate.

ACTIVITY:

- 1. Define Element.
- 2. State the symbol of the following elements:
 - i. Carbon?_____
 - ii. Zinc?_____

- iii. Copper?_____
- iv. Aluminium?_____

