

# 3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj



#### **WORKSHEET 20**

School: Ba Sangam College Subject: Biology

Year:13 Name:\_\_\_\_\_

| Strand   | 13.3 Biodiversity Change and Sustainability                                       |
|----------|-----------------------------------------------------------------------------------|
| Sub      | B13.3.2.6 Kingdom Animalia                                                        |
| strand   |                                                                                   |
| Content  | Describe the characteristics that classify organisms in this kingdom to different |
| Learning | categories; and explore the increasing complexities of the different groups from  |
| Outcome  | simple organisms to complex chordates                                             |

### PHYLUM ECHINODERMATA

Main features of the phylum:

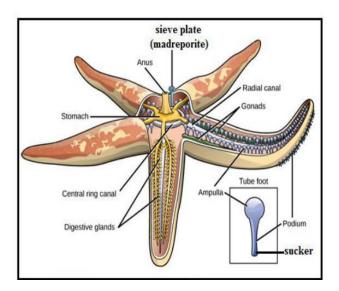
- ♦ Examples include sea stars, brittle stars, sand dollars and sea cucumbers.
- ♦ Are marine, triploblastic unsegmented.
- ♦ Are coelomates and deuterostomes.
- ♦ The anus is on the upper surface (aboral surface) and the mouth on the lower surface (oral surface).
- ♦ Pedicellariae are small jaw-like structures on the outer surface of the starfish. They have a protective function and also help to trap small prey. Echinoderms have 3 unique features:
- Adults are radially symmetrical while larvae are bilaterally symmetrical.
- Have internal calcareous skeleton which is made of calcium carbonate.
- Have tube feet

#### **Echinoderm Skeleton**

- Internal skeleton of calcium carbonate
- Presence of ossicle: small calcareous elements embedded in the dermis of the body wall of echinoderms which forms part of the endoskeleton and provide rigidity and protection Water Vascular System
- The water vascular system is a hydraulic system used by echinoderms for locomotion (through movement of tube feet), food and waste transportation, and respiration.

#### **How the Water Vascular System works**

- Along each arm of the starfish (lower surface) is a groove that bears rows of tube feet. These tube feet are operated by the WVS, a system of canals filled with fluid.
- Water enters the system through the sieve plate (or madreporite) on the upper surface of the starfish to a connecting canal that leads to the ring canal within the central disc.
- From the sieve plate, water passes into the ring canal within the central disc (ring)
- It then passes into the radial canals in the radiating arms


Flow of water in the Water Vascular System
Sieve plate → short connecting canal → ring canal →
radial canals → tube feet

#### At the tube feet

- The tip of the foot bears a sucker, the other end bears an ampulla.
- A valve is at the joint where branch (arm) canal joins tube foot.
- When ampulla contracts, water is forced out of the sucker end of the tube foot, and the foot moves forward and attaches to substrate.
- The valve keeps water from flowing back in the canal.
- When foot muscles relax water flows into the ampulla, foot loosens and eases forward.
- Contraction and expansion of ampulla

Sangam Education Board – Online Resources

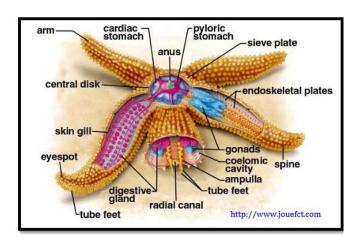
corresponds to the extension and shortening of tube feet to achieve movemen



#### **Nervous System**

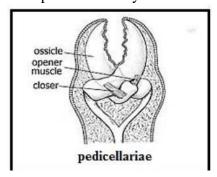
- Echinoderms have a diffuse nervous system with no "brain".
- Consists of nerve network that is connected to gangolionated nerve cords found around the body.

# Significance of radial symmetry


- Believed that bilateral symmetrical multicellular animals have evolved from radially symmetrical organisms.
- Radially symmetrical organisms have sac-like body, double layered body and this resembles embryonic gastrula of higher animals.
- Radially symmetry adaptation for sedentary or sluggish way of life.
- Most undergo metamorphosis (from free swimming bilateral symmetrical lava to a bottom dwelling adult with radial symmetry.

#### **Divisions of Echinodermata**

Phylum Echinodermata is divided into 5 classes.


### **CLASS Asteroidea (star like)**

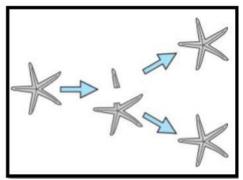
- Some live in sandy or muddy substrates
- Typically have central disc and five arms
- Many species are brightly coloured



### **Body Plan**

- Spines form calcium plates called ossicles.
- The oral surface of each arm has a single ambulacral groove
- Have a large coelom where all the main organs occur
- Pedicellariae: Specialized pinchers found on the aboral surface surrounds the spines.
- Feeding and digestion Mouth is in the centre of the lower surface of the disk, short oesophagus, broad stomach and short-intestine within the central disk. It uses to manipulate prey as follows:
- The sea star attaches its suckers of its tube feet to both halves of the clam shell and pulls until the shell open a crack.
- The sea star then turns the stomach inside through its mouth & inserts its stomach into the clam.
- Enzymes secreted by the sea stars stomach digest the clam's soft part while they are still in the shell.




### Reproduction

- **Sexual Reproduction** Fertilisation is external and occurs in water where eggs and sperms are released.
  - Fertilized egg develops into a bipinnaria larva.

After 2 months the larva settles to the bottom and undergoes metamorphosis

### **Asexual Reproduction (regeneration)**

• Most species can regenerate from fragments that include the disk as follows.



Other Systems Fluid in the coelom bathes the organs.

- Nutrients and oxygen are exchanged within the fluid
- Gas exchange and waste excretion takes place through diffusion through thin walls of the tube feet and skin gills.
- Are ecologically important because they prey on oysters, clams and other organisms

## **CLASS Ophiuroidea (snake-like)**

- Well-developed ossicles in the arms forming a system of articulating vertebrae
- The oral surface bears 5 pair of bursal sacs
- Is the largest, which live primarily on sea bottom beneath stone.
- Distinguished long narrow arms which allow them to move very quickly.
- Have a large stomach with no intestine or anus
- Are coral inhabitants
- Regenerate well; reproduces asexually by regeneration.

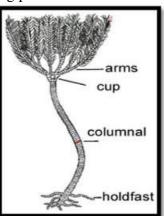
### **CLASS Echinoidea**

- Ossicles are joined to form a rigid test
- Two attributes: mobile spines, and hollow skeleton or test Sea urchin
- The internal organs are enclosed within a compact, rigid endoskeleton called a test.
- Use tube feet for locomotion, feed by scraping algae from hard surface.
- Have-barbs on long spines (protection from predators)
- Gas exchange is by highly branched gills or

Sangam Education Board – Online Resources

modified tube feet.

- Ingestion and Digestion All are herbivores Feed on alga material so are mainly found in sunlit waters.
- Food is chopped by 5 sharp pointed teeth (Aristotle's lantern)
- The digestive system is long to deal with vegetable manner
- The anus is located aborally.
- Reproduction
- At spawning the entire coelom will fill with sperm or eggs.


## CLASS Crinoidea (lily like) e.g Feather Star

- These are mainly filter feeders.
- Are sessile. Have long stalk attached to rocks or sea

bottoms.

cucumbers.

- The 5 arms branch out to form many more arms.
- 10 arms have podia (no ampullae) lining ciliated grooves feeding particles to the mouth.



# **CLASS Holothuroidea (Eg. Sea cucumbers)**

- Are aimless, reside on sea bottom and have a soft body i.e. no large exoskeleton.
- They have no calcitic skeleton, except for spicules embedded in a leathery skin
- Most are immobile, and lie on the sea bed rolling back and forth with the swell. Some have limited mobility using

their tube feet Tube feet present on ventral side.

- A fringe of tentacles surrounds the mouth which sweeps up sediment and water.
- -Respiratory trees are often fed oxygen by the sea cucumber actually breathing through their anus. These respiratory trees are unique to sea

| Activity                                                                                        |                                                      |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
| •                                                                                               |                                                      |
| 1. How can the endoskeleton of echinoderms be compared to similar structures among vertebrates, | (2m)                                                 |
| arthropods and molluscs?                                                                        | 7. Do echinoderms use internal or external           |
|                                                                                                 | fertilization? Are they divided into separate sexes? |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |
| (2m)                                                                                            | (1m)                                                 |
| 2. What system allows echinoderms to move                                                       |                                                      |
| around and attach to certain substances?                                                        |                                                      |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |
| (1m)                                                                                            |                                                      |
| 3. What type of digestive system echinoderms                                                    |                                                      |
| contain?                                                                                        |                                                      |
|                                                                                                 |                                                      |
| (1m)                                                                                            |                                                      |
| 4. What characteristic of echinoderm embryos                                                    |                                                      |
| makes this phylum evolutionarily resemble                                                       |                                                      |
| chordates?                                                                                      |                                                      |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |
|                                                                                                 |                                                      |

5. How can the symmetry and the nervous system be described in echinoderms?

\_\_\_\_\_(1m)