PENANG SANGAM HIGH SCHOOL P.O.BOX 44, RAKIRAKI

LESSON NOTES WEEK 22

Year/Level: 13A/B Subject: BIOLOGY

Strand	3 Biodiversity Change & Sustainability
Sub Strand	3.2.5 Kingdom Plantae (Gymnosperms)
Content Learning Outcome	Describe the general characteristics of
	gymnosperms
	• Explain the reproductive cycle of gymnosperms and
	adaptation to life on land

VASCULAR SEED PLANTS (Spermatophyta)

GYMNOSPERMS AND ANGIOSPERMS

General Characteristics of Seed Plants

- Have vascular tissue.
- Use seeds to reproduce.
- Gametophyte is reduced and cannot photosynthesise.
- Sperms are non-flagellated.
- The sporophyte embryo is contained within a seed coat. (Protects embryo from desiccation). It retains embryo till conditions become favourable.
- Seed plants produce **heterospores** that have different looking spores usually a male and a female where one grows into **male called microspore** and the **female megaspore**
- Each microspore develops into pollen grains
- The pollen grain in seed plants develops a pollen tube which carries the sperm to the egg. Hence there is no need for external water

PHYLUM: CONIFEROPHYTA

GYMNOSPERMS (NON FLOWERING PLANTS)

Division: conifers/coniferophyta

Characteristics of Gymnosperms

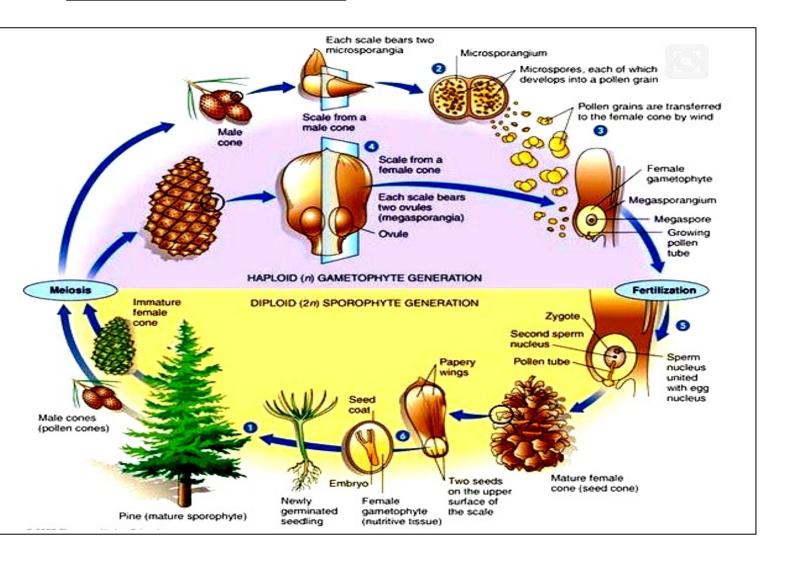
- They do not have an outer covering around their seeds.
- They do not produce flowers.
- They do not produce fruits.

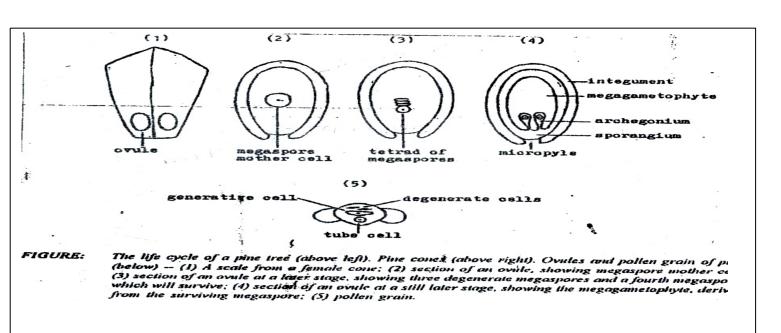
SANGAM EDICATION BOARD - ONLINE RESOURCES

- They are pollinated by the wind.
- Have powerful tap roots, aided by lateral roots.
- Have evergreen needle like leaves which helps to withstand heat, cold and high winds.
- Reproductive structures are cones.
- Most are evergreens: pines, spruces, jews, junipers, cedars, redwoods etc
- Includes some of the tallest (red woods and some eucalyptus); largest (gaint sequoias) and oldest (
 bristle cone pine) living organisms
- Most lumber and paper pulp is from conifer wood
- Needle shaped conifer leaves are adapted to dry conditions
- Thick cuticle covers the leaf
- Stomata are in pits reducing water loss
- Have tracheids

LIFE CYCLE OF PINE

Gymnosperms produce two types of cones:


- Pollen Cones and Seed Cones
- Pollen cones are found at the lower branches of the trees, are small in size and produce microspores
- Seed cones are found at the top branches of the trees, are larger in size and produce megaspores


The life cycle of a pine demonstrates the key reproductive adaptations of seed plants

- The multicellular sporophyte is the most conspicuous stage: the pine tree is a sporophyte, with its sporangia located on cones
- The multicellular gametophyte generation is reduced and develops from haploid spores that are retained within sporangia
- The male gametophyte is the pollen grain: there is no antheridium
- The female gametophyte consists of multicellular nutritive tissue and an archegonium that develops within an ovule
- Conifer life cycles are <u>heterosporous</u>: male and female gametophytes develop from different types of spores produced by separate cones

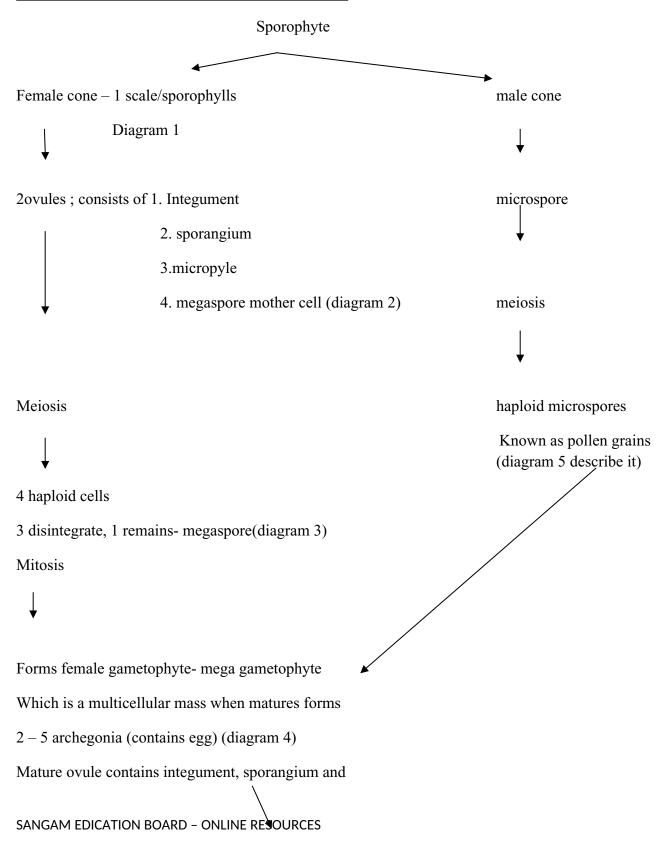
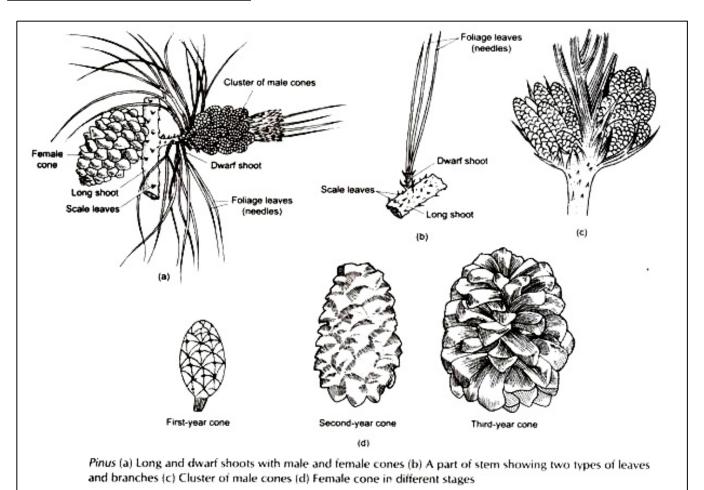

- Trees of most pine species bear both pollen cones and ovulate cones which develop on different branches
- <u>Pollen cones</u> have <u>microsporangia</u>; cells in these sporangia undergo meiosis producing <u>haploid</u> microspores, small spores that develop into pollen grains- the male gametophytes
- <u>- Ovulate</u> cones have <u>megasporangia</u>; cells in these sporangia undergo meiosis producing large megaspores that develop into the female gametophyte. Each ovule initially includes a <u>mega sporangium</u> (nucleus) enclose in protective integuments with a single opening, the microphyle
- it takes nearly 3 years to complete the pine life cycle, which progresses through a complicated series of events to produce mature seeds
- wind blown pollen falls onto the ovulate cone and is drawn into the ovule through the microphyle
- the pollen grain germinates in the ovule, forming a pollen tube that begins to digest its way through the nucleus
- a megaspore mother cell in the nucleus undergoes meiosis producing four haploid megaspores, one of which will survive: it grows and divides repeatedly by mitosis producing the immature female gametophyte
- 2/3 archegonia, each with an egg, then develop within the multicellular gametophyte
- More than a year after pollination, the eggs are ready to be fertilized, two sperm cells have developed and the pollen tube has grown through the nucleus to the female gametophyte
- Fertilization occurs when one of the sperm nuclei unites with the egg nucleus
- All eggs in an ovule maybe fertilized, but usually only one zygote develops into an embryo
- The pine embryo, or new sporophyle, has a rudimentary root and several embryonic leaves. It is embedded in the female gametophyte, which nourishes the embryo until it is capable of photosynthesis. The ovule has developed into a pine seed, which consists of an embryo(2n), its food source (n) and a surrounding seed coat (2n) derived from the integuments of the parent tree
- Scales of the ovulate cone separate, and the winged seeds are carried by the wind to new locations
- A seed that lands in a habitable place germinates, its embryos emerging as a pine seedling

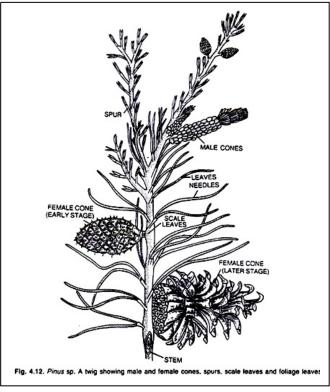
DIAGRAM OF LIFE CYCLE OF PINE

SUMMARY OF GYMNOSPERM LIFECYCLE



Mega gametophyte

pollinatio


- Land near micropyle
- Goes inside and grows a pollen tube, penetrates archegonia
- Generative cell and tube cell enter, generative cell releases 2 sperm nuclei, tube ruptures
- 1 sperm and egg fertilization zygote mitosis embryo (within mega gametophyte) whole ovule is shed as seed
- Seed consists of -1. Seed coat from integument
 - 2. food endosperm tissue of megagametophyte
 - 3. embryo
- 3 years 1.pollination 2.fertilisation 3.shedding

PINE CONE IN VARIOUS STAGES

MALE AND FEMALE PINE CONE

• Smaller in size.

- Located on the top of lower branches.
 Zormoremicrosporangiaonthe underside.
 - 4 microspores produced.
- Two of the four microspores develop into pollen grain.

 Contain the pollen

- Much larger in size.
- Located on the tips of upper 2 axules are produced on the upper side.
 - 4 megaspores produced.
- Shipshedevelopsintothefemale

Holds the seeds

Adaptations to life on land

♦ Embryo well protected within the seed.

- ♦ Seed can remain dormant for a long period of time.
- **Heterospory**–produces 2 kinds of spores: female megaspores and male microspores.
- ♦ Gametophyte is much reduced and dependent on the sporophyte which is highly modified.
- ♦ Have true roots, stems and leaves suitable for terrestrial habitat.
- ◆ Sperms do not require water for fertilization.

ACTIVITY QUESTIONS:

1.	Sate the importance of seeds in the plant kingdom?
2.	How are the male gamete of gymnosperm formed?
3.	How are the female gamete of gymnosperm formed?
4.	How are gymnosperm seeds formed?