3055 BA SANGAM COLLEGE

Subject: Chemistry

Year:12

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 21

School: Ba Sangam College

Name:_____

Strand	4 Materials
Sub	5 Food Chemistry
strand	
Content	CH 12 5.1.2
Learning	Investigate the types, properties and uses of carbohydrates
Outcome	

5.1.2 Carbohydrates

- Carbohydrates are one of the main types of nutrients. They are the most important source of energy for the body.
- The digestive system changes the carbohydrates into glucose (blood sugar) for energy for the cells, tissues and organs.
- Carbohydrates are produced by plants through the process of photosynthesis. The overall process can be represented as:

 $6\text{CO}_{2(g)} + 6\text{H}_2\text{O}_{(1)} \xrightarrow[\text{chlorophyll}]{\text{light}} C_6\text{H}_{12}\text{O}_{6(s)} + 6\text{O}_{2(g)}$

- Glucose and more simple carbohydrates are then converted to more complicated carbohydrates such as starch or cellulose.
- Carbohydrates can be categorised into three main groups as summarized in the table below.

Molecule	Description
1. Monosaccharides	 Monosaccharides are the simplest form of carbohydrate and all of them have the empirical formula CH₂O. Examples are glucose (C₆H₁₂O₆) and fructose (C₆H₁₂O₆).
	$\begin{array}{c} & & \\ & & \\ & H \\$
	Glucose Fructose
	 These molecules have the same molecular weight but the arrangement of the atoms in each of these molecules is slightly different (see structures above). Therefore, glucose and fructose are isomers of each other. Glucose is a monosaccharide that occurs in significant quantities in nature and fructose is a sugar found naturally in many fruits and vegetables, and added to various beverages such as soda and fruit-flavored drinks. The primary function of monosaccharide is as a source of energy. In the presence of oxygen, the monosaccharides can be broken down to carbon dioxide and water with the release of energy. This energy is used by the cell to do work. Monosaccharides serve as "building blocks" for the formation of disaccharides and polysaccharides.

Test for glucose with Fehling's or Benedict's solution

- Glucose reduces the blue copper sulphate solution in the Fehling's or Benedict's solution (containing Cu²⁺ ions) to insoluble reddish-brown copper(I) oxide, which is seen as a precipitate.
- Positive test is indicated by a green suspension and a red precipitate.

Condensation and Hydrolysis Reactions

1. Condensation

4 A chemical process by which two or more molecules are **joined** together to make a larger,

more complex molecule with the loss of a water molecule.

- Examples include formation of maltose and sucrose.
- A glycosidic bond is a type of chemical linkage between the monosaccharide units of disaccharides and polysaccharides which is formed by the removal of a molecule of water.

Example 1: Formation of maltose

Example 2: Formation of sucrose

Hydrolysis

A hydrolysis reaction uses enzymes or acids to separate a compound into its sub-units through the addition of a water molecule. For instance, disaccharides are hydrolyzed into two monosaccharides.

Activity

Sangam Education Board – Online Resources

1.	Explain t	he difference between condensation and hydrolysis reaction.	(1m)
2.	What is a	a glycosidic bond?	
(1:	m)		
3.	Polysacc	haride and disaccharides are two forms of carbohydrates.	
	i.	Give an example of a polysaccharide.	
			(1m)
	11.	Name the polysaccharide that is used as a food reserve in plants.	(1m)
	iii.	Name the two reagents that initiate hydrolysis in polysaccharides and disaccharides.	
			_(1m)
	the two b	pottles contained glucose solution. (2m)	
5.	Starch ca drochlori	n be converted to glucose by reacting it with water in the presence of dilute c acid.	e hy
	i.	What is the name of the type of chemical reaction involved?	
			(1m)
	ii.		(1111)
		What is the function of the hydrochloric acid?	(1111)
	iii.	What is the function of the hydrochloric acid?	(1m)
		What is the function of the hydrochloric acid? How could you show that the final reaction mixture contains glucose?	(1m)