PENANG SANGAM HIGH SCHOOL

P.O.BOX 44, RAKIRAKI

LESSON NOTES

WEEK 21

Year/Level: 13A/B Subject: Chemistry

Strand 3	Reactions Aqueous Chemistry					
Sub Strand 3.3						
Content Learning Outcome	By the end of this lesson students should be able: * Explain the significance of the magnitude of the equilibrium constant <i>Kc</i> * Use <i>Kc</i> to calculate an equilibrium concentration of species involved in an equilibrium reaction					

Le Chatelier's Principle

States that if a system is in equilibrium is subjected to stress (conc., pressure, temp and catalyst) behave in such a way as to oppose the stress.

Stress: concentration, temperature, volume and pressure.

Suppose you have the equilibrium between nitrogen, hydrogen and ammonia

$$N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$$
 $\Delta H^{\circ} = -92.2 \text{ kJ}$

Stress		Effect on Equilibrium				
Concentration	Increase in [N ₂ (g)]	Moves toward right				
	Decrease in [NH ₃ (g)]	Moves toward right				
Pressure	Increase	Moves toward right (least number of moles)				
	Decrease	Moves toward left				
Temperature	Increase	Moves toward left (Favors endothermic reactions)				
	Decrease	Moves toward right (Favors exothermic reactions)				
Catalyst	No effect					

Note: another factor is volume, so apply Boyles law to work with this factor (pressure volume relationship)

Significance of the Magnitude of Kc

- When Kc is very large ($\geq 1 \times 10^{2}$) the reaction proceeds towards completion i.e., more than reactants at equilibrium.
- \star When Kc = 1, the concentration of products and reactants are nearly the same at equilibrium.
- ★ When Kc is very small ($\leq 1 \times 10^{-2}$) then hardly any products are formed.

Note:

* Kc value only indicates the extent of the reaction but not the time taken to reach the equilibrium.

Example 1

What do the following K_c values indicate?

a.
$$H_{2(g)} + Br_{2(g)} \rightleftharpoons 2HBr_{(g)}$$
 $K_c = 7.9 \times 10^{18}$

Solution

Reaction proceeds far towards completion.

b.
$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$
 $K_c = 4.8 \times 10^{-31}$

Solution

Hardly any products are formed.

Example 2: Calculating Equilibrium Concentrations Using K_0

Consider the reaction equation:

$$N_{2|g|} + 3H_{2|g|} \Rightarrow 2NH_{3|g|}$$

Calculate the [NH₅] given that the $K_c = 9.0$; [N₂] = 0.9 mol L⁻¹ and [H₂] = 0.9 mol L⁻¹.

$$K_0 = \frac{[\text{Products}]}{[\text{Reactants}]} = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} = \frac{[x]^2}{[0.3][0.9]^3}$$

$$9.0 = \frac{[x]^2}{0.22}$$

$$9.0 \times 0.22 = [x]^2$$

$$1.97 = [x]^2$$

$$\sqrt{1.97} = x$$

$$1.40 \text{ mol } L^{-1} = x$$
Therefore, [NH₂] is 1.40 mol L⁻¹

Exercise
LACI CISC

1.	Which of the following two i	reactions w	would t	tend to	proceed	furthest t	o completion	when	they
	reach equilibrium?								

a.
$$2HBr_{(g)} \rightarrow H_{2(g)} + Br_{2(g)} K_c = 7.0 \times 10^{-20}$$

b.
$$Si_{(s)} + O_{2(g)} \leftrightarrow SiO_{2(s)}$$
 $K_c = 2.0x10^{142}$

c.
$$C_2H_{4(g)} + H_{2(g)} \rightarrow C_2H_{6(g)}$$
 $K_c = 1.2x10^1$ (hint: refer to significance of magnitude of Kc)

2. At 55°C the Kc For the following reaction is:

- a. Write the equilibrium expression for the reaction.
- b. Calculate the concentration of $N_2O_{4\,(g)}$ present in equilibrium with 0.05mol of $NO_{2(g)}$ in a one litre container.

(Hint: at 2 moles its 1.17mol/L, what will be the conc. at 0.05 moles?)