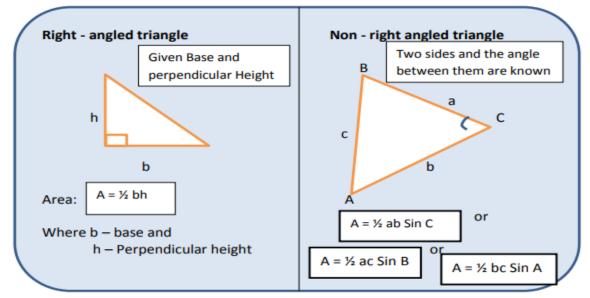


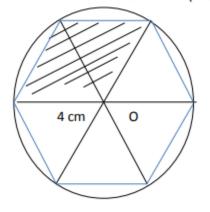
3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj


WORKSHEET 20

School: <u>Ba Sangam College</u>	Year / Level: <u>12</u>	
Subject: Mathematics	Name of Student:	
Strand	5 – Trigonometry	
Sub strand	5.1 – Triangles	
Content Learning Outcome	 Investigate and solve problems using trigonometric relations 	

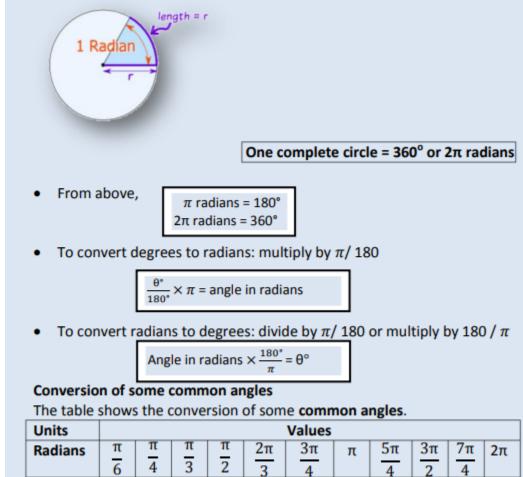
Trigonometry


(Ref: Year 12 Mathematics Pg 147 -154)

Area of a Triangle

Example 1:

The diagram below shows a regular hexagon inscribed in a circle of radius 4 cm at centre O. (Diagram not to scale).



Calculate:

- a) Angle of each sector formed.
- b) the area of one of the triangle
- c) the area of shaded region.

a) Angle region	b) area of one of the triangle	l c) area of shaded l
$T_{angle} = 360^{\circ}$ $6x = 360^{\circ}$	$A_{\Delta} = \frac{1}{2}abSinC$ $= \frac{1}{2}(4 \times 4)Sin60^{0}$	$A = 2 \times A_{\Delta}$ $= 2 \times 4\sqrt{3}$
$x = 60^{\circ}$	$=\frac{2}{4}\sqrt{3}cm^2$	$=8\sqrt{3}cm^2$

Conversion to degrees to radians and vice versa

120°

135°

180°

225°

270°

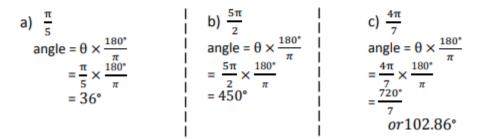
315°

360°

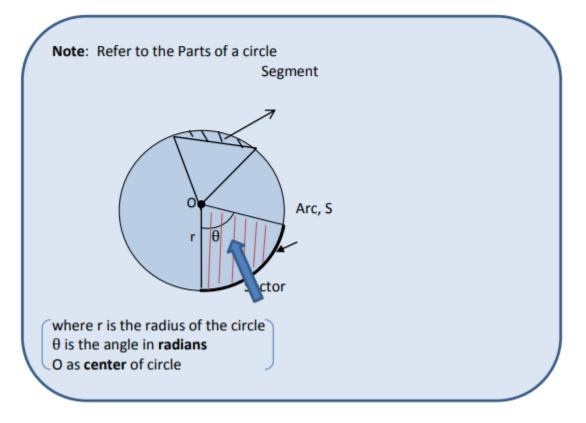
30°

45°

°0


°06

Degrees


Example 1: Convert the following angles to radians

a)
$$45^{\circ}$$

angle $=\frac{\theta^{*}}{180^{*}} \times \pi$ | $angle =\frac{\theta^{*}}{180^{*}} \times \pi$ | $angle =\frac{15^{*}}{180^{*}} \times \pi$

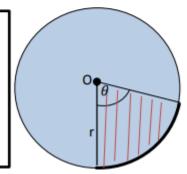
Example 2: Convert the following angles to degrees

ARC LENGTH, AREA OF SECTOR and SEGMENT

1. ARC LENGTH (S)

The arc length is the measure of the distance along the curved line making up the arc.

Formulae:

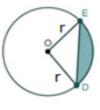

S = r θ [Angle must be in radians]

2. AREA OF SECTOR

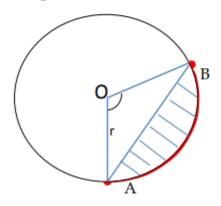
Sector is the area enclosed by an arc and the two radii

Formulae:

Area sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$ Since 360° = 2π radians, substituting yields Area sector = $\frac{\theta}{2\pi} \times \pi r^2$ = $\frac{\theta}{2} \times r^2$, rearranging = $\frac{1}{2} r^2 \theta$ [angle must be in radians]

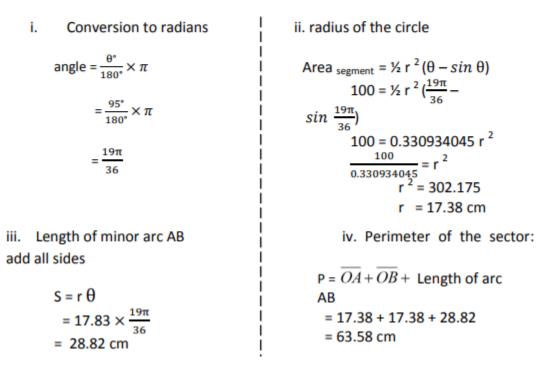


3. AREA OF SEGMENT

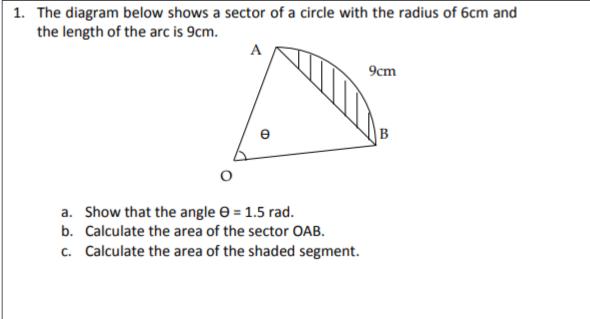

Segment is the region bounded by a chord and an arc.

Formulae:

Area segment = Area sector - Area triangle = $\frac{1}{2}$ r² θ - $\frac{1}{2}$ r² sin θ or = $\frac{1}{2}$ r² (θ - sin θ) [angle must be in radians]

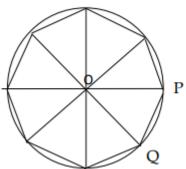


Example 3: The diagram below shows a circle of radius r. OAB is a sector of the circle and has an angle of 95°.



- i. Convert the angle to radians.
- Given that the segment has an area of 100 cm², calculate radius of the circle.
- iii. Calculate the length of minor arc AB.
- iv. Hence or otherwise, determine the perimeter of the sector.

Answers:



ACTIVITY

(6 MARKS)

2. The diagram below shows a regular octagon inscribed in a circle of radius 4 cm with centre O.

- Calculate the following:
 - a. Length of arc PQ
 - b. Area of sector OPQ
 - c. Area of triangle OPQ
 - d. Area of the octagon