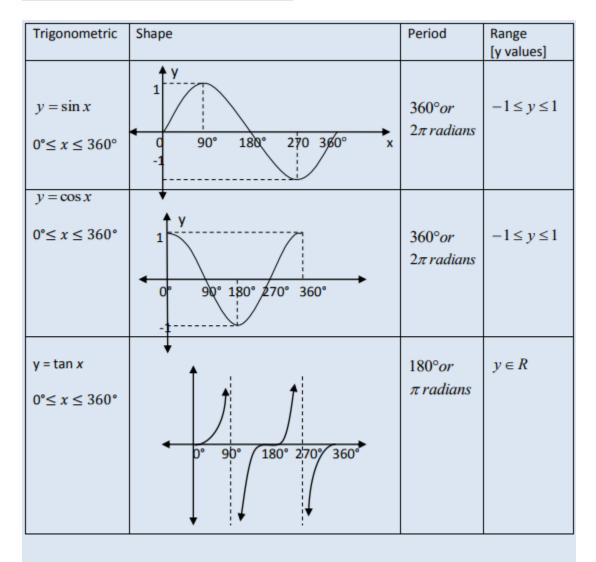


# 3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj




#### **WORKSHEET 22**

School: Ba Sangam College
Year / Level: 12
Subject: Mathematics
Name of Student:

| Strand                          | 5 - Trigonometry          |
|---------------------------------|---------------------------|
| Sub strand                      | 5.2 Trigonometric Graphs  |
| <b>Content Learning Outcome</b> | Draw Trigonometric Graphs |

<u>Trigonometry</u> (Ref: Year 12 Mathematics Pg 163 -167)

<u>Graphs of Basic Trigonometric Functions</u>



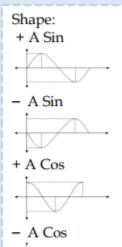
Note these graphs are functions since domains are not repeated.

## **Transformation of Trigonometric Graphs**

Note: General form of Transforming Trigonometric graphs

$$y = A Sin (Bx \pm C)$$
 or

$$y = A Cos (Bx \pm C)$$


$$y = A$$

$$Bx \pm c$$

Amplitude: The height / distance

+ A means the graph is oriented as usual A means that the graph is

inverted



Period: B helps determine the *period* of the graph (the length of the interval needed for the graph of the function to start repeating itself).

period = 
$$\frac{360}{B}$$
 or  $\frac{2\pi}{B}$ 

C shifts the y-axis or the graph by  $\frac{C}{R}$ units.

 $+\frac{C}{B}$  shifts the yaxis to the right or the graph moves by units to the left.

 $-\frac{C}{B}$  shifts the yaxis to the left or the graph moves by units to the right

While sketching the graph, label clearly the y – intercept, period, amplitude and draw a complete smooth curve. You may use the table method but make sure the shape is complete.

**EXAMPLE 1:** A trigonometric function is defined by the equation  $y = 3 \sin 2 \theta$ . Find the amplitude and the period of the function.

### General form

Amplitude period

$$y = A Sin (Bx \pm \Theta)$$

Compare

$$y = 3 \sin 2 \Theta$$

Therefore Amplitude is 3 and the period is  $\frac{360}{2} = 180^{\circ} \text{ or } \pi$  radians

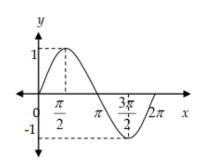
### **EXAMPLE 2:** Sketch the following graphs using the table method:

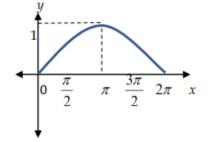
a) 
$$y = \sin x$$

$$b) y = \sin\left(\frac{1}{2}x\right)$$

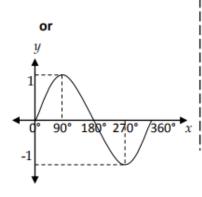
c) 
$$y = \sin 2x$$

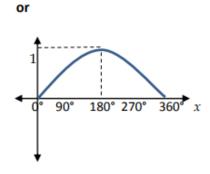
## Answer [Either in degrees or in radians]

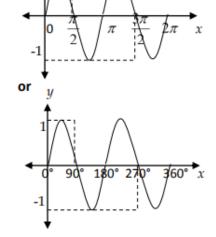

| x                | $y = \sin x$ | (x,y)                 |
|------------------|--------------|-----------------------|
| 0                | 0            | (0,0)                 |
| $\frac{\pi}{2}$  | 1            | $(\frac{\pi}{2},1)$   |
| $\pi$            | 0            | $(\pi,0)$             |
| $\frac{3\pi}{2}$ | -1           | $(\frac{3\pi}{2},-1)$ |
| $2\pi$           | 0            | $(2\pi,0)$            |


| x                | $y = \sin\left(\frac{1}{2}x\right)$ | (x,y)                   |
|------------------|-------------------------------------|-------------------------|
| 0                | 0                                   | (0,0)                   |
| $\frac{\pi}{2}$  | 0.7                                 | $(\frac{\pi}{2}, 0.7)$  |
| π                | 1                                   | $(\pi,1)$               |
| $\frac{3\pi}{2}$ | 0.7                                 | $(\frac{3\pi}{2}, 0.7)$ |
| $2\pi$           | 0                                   | $(2\pi,0)$              |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                      | $\boldsymbol{x}$ | $y = \sin 2x$ | (x,y)                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------------------|
| $ \frac{\pi}{4} \qquad 0 \qquad (\frac{\pi}{4}, 1) $ $ \frac{\pi}{2} \qquad 0 \qquad (\frac{\pi}{2}, 0) $ $ \frac{3\pi}{4} \qquad -1 \qquad (\frac{3\pi}{4}, -1) $ $ \pi \qquad 0 \qquad (\pi, 0) $ $ \frac{5\pi}{4} \qquad 1 \qquad (\frac{5\pi}{4}, 1) $ $ \frac{3\pi}{2} \qquad 0 \qquad (\frac{3\pi}{2}, 0) $ $ \frac{7\pi}{4} \qquad -1 \qquad (\frac{7\pi}{4}, -1) $ | 0                | 0             | (0,0)                 |
| $ \begin{array}{c cccc} \frac{3\pi}{4} & -1 & & (\frac{3\pi}{4}, -1) \\ \hline \pi & 0 & & (\pi, 0) \\ \hline \frac{5\pi}{4} & 1 & & (\frac{5\pi}{4}, 1) \\ \hline \frac{3\pi}{2} & 0 & & (\frac{3\pi}{2}, 0) \\ \hline \frac{7\pi}{4} & -1 & & (\frac{7\pi}{4}, -1) \end{array} $                                                                                         | $\frac{\pi}{4}$  | 1             |                       |
| $ \begin{array}{c cccc} \pi & 0 & (\pi,0) \\ \hline \frac{5\pi}{4} & 1 & (\frac{5\pi}{4},1) \\ \hline \frac{3\pi}{2} & 0 & (\frac{3\pi}{2},0) \\ \hline \frac{7\pi}{4} & -1 & (\frac{7\pi}{4},-1) \end{array} $                                                                                                                                                            | $\frac{\pi}{2}$  | 0             | $(\frac{\pi}{2},0)$   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                     |                  | -1            | $(\frac{3\pi}{4},-1)$ |
| $\begin{array}{c cccc} \hline 4 & & & & & & \\ \hline 3\pi & & & & & & \\ \hline \frac{3\pi}{2} & & & & & & \\ \hline \frac{7\pi}{4} & & -1 & & & & \\ \hline & & & & & & \\ \hline \end{array}$                                                                                                                                                                           | π                | 0             | $(\pi,0)$             |
| $ \begin{array}{c c} 3\pi & 0 & (\frac{3\pi}{2},0) \\ \hline 7\pi & -1 & (\frac{7\pi}{4},-1) \\ \hline \end{array} $                                                                                                                                                                                                                                                       |                  | 1             |                       |
| $\left \begin{array}{c c} 7\pi \\ \hline 4 \end{array}\right $ -1 $\left(\frac{7\pi}{4}, -1\right)$                                                                                                                                                                                                                                                                        | $3\pi$           | 0             | $(\frac{3\pi}{2},0)$  |
| $2\pi = 0$ $(2\pi = 0)$                                                                                                                                                                                                                                                                                                                                                    |                  | -1            | $(\frac{7\pi}{4},-1)$ |
| 211 0 (211,0)                                                                                                                                                                                                                                                                                                                                                              | $2\pi$           | 0             | $(2\pi,0)$            |


The sine graph completes its shape from 0 to  $2\pi$  .


Since the period is half, the half of sine graph is shown from 0 to  $2\pi$ .



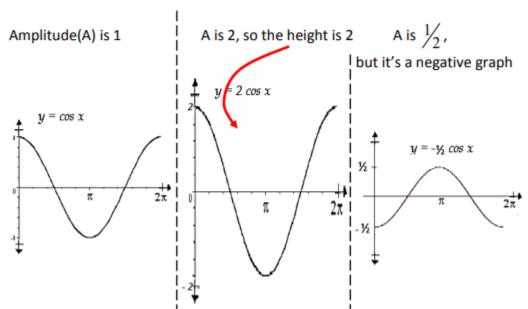



Since the period is doubled, the two complete shape of sine graph is shown from 0 to  $2\pi$ .







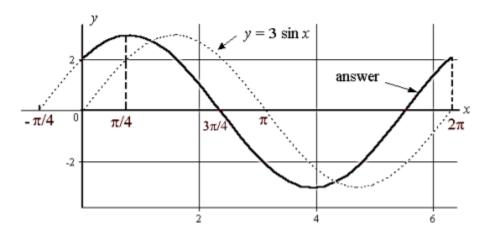

**EXAMPLE 3:** Sketch the following graphs:

a) 
$$y = \cos x$$

b) 
$$y = 2\cos x$$

c) 
$$y = -\frac{1}{2}\cos x$$

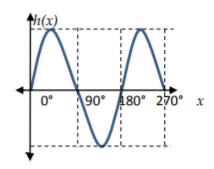
Answer: using the transformation method




**EXAMPLE 4:** Sketch  $y = 3 \sin(x + \frac{\pi}{4})$ 

A=3;

B: period=2π;


C: Shift the graph  $\frac{\pi}{4}$  units to the left or Shift the y-axis by  $\frac{\pi}{4}$  units to the right



### **ACTIVITY: Sketch**

1.

The graph of h(x) is shown below within the domain  $0^{\circ} \le \theta \le 270^{\circ}$  . Use it to answer the following questions.



- i) What is the period of the graph of h(x) shown above?
- ii) What is the amplitude of h(x)?
- iii) Write down the equation of h(x).

(2 MARKS)

2.

Sketch the following graphs using the domain as  $0 \le \theta \le 2\pi$  .

$$y = 3\sin\left(2x + \frac{\pi}{2}\right)$$

| 3.                                                                                  | (2 MARKS) |
|-------------------------------------------------------------------------------------|-----------|
| Sketch the following graphs using the domain as $0^{\circ} \le x \le 360^{\circ}$ . |           |
| $y = \cos(2x + 180^{\circ})$                                                        |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |
|                                                                                     |           |

(2 MARKS)

THE END