PENANG SANGAM HIGH SCHOOL DEPARTMENT OF MATHEMATICS/PHYSICS YEAR 11 MATHEMATICS - WEEK 24

STRAND 5

COORDINATE GEOMETRY

Sub – Strand 5.2 PARALLEL AND PERPENDICULAR LINES

Learning Objective

At the end of this lesson, students should be able to:

- Describe the relationship of gradient of parallel and perpendicular lines.
- Determine equation of parallel and perpendicular lines.

Parallel Lines

✤ The gradient is same.

Examples

1. Given 3y - 4x = 5 and 4y + 6 = 3x. Are these lines parallel, perpendicular or neither? Why?

3y - 4x = 5	4y +6=3x
3y - 4y + 4y - 5 + 4y	4y + 6 - 6 = 3x - 6
Jy -++ +++ -J +++	4y = 3x - 6
3y = 5 + 4x	Av 3x -6
$\frac{3y}{7} = \frac{4x+5}{7}$	$\frac{4y}{4} = \frac{3x^2 - 6}{4}$
5 5	$\frac{3}{5}$ 6
$y = \frac{4}{7}x + \frac{5}{7}$	^y ⁻ 4 [*] 4
5 5	y = x - 3
	′ 4 [°] 2

 m_2

SANGAM EDUCA I IVIN BUARD - VINLIINL RESUURCES

Parallel	Perpendicular
$m_1 = m_2$	$m_1 \times m_2 = -1$
$\frac{4}{3} \neq \frac{3}{4}$	$\frac{4}{3} \times \frac{3}{4} = -1$
• :4 :=4	1≠−1

Hence these lines are neither parallel nor perpendicular.

2. What is the equation of a line that passes through the point (4, -5) and is parallel to 3x + 2y = 12.

$$3x + 2y = 12 \qquad (4, -5)$$

$$3x - 3x + 2y = 12 - 3x \qquad m_1 = m_2 \qquad (x_1, y_1)$$

$$2y = 12 - 3x \qquad m_1 = m_2 \qquad (x_1, y_1)$$

$$\frac{2y}{2} = \frac{12 - 3x}{2} \qquad \frac{-3}{2} = m_2 \qquad y - y_1 = m(x - x_1)$$

$$y = 6 - \frac{3}{2}x \qquad \therefore m_2 = \frac{-3}{2} \qquad y + 5 = \frac{-3}{2}x + 6$$

$$y = -\frac{3}{2}x + 6 \qquad y + 5 - 5 = \frac{-3}{2}x + 6 - 5$$

$$y = -\frac{3}{2}x + 1$$

3. A line passes through a point (2, 5) and has a slope of -3. What is the equation of a line perpendicular to this line through (2, 5)?

(2, 5) **Perpendicular**

$$(x_1, y_1)$$
 $m_1 \times m_2 = -1$
 $y_{-5} = \frac{1}{3}(x - 2)$
 $m = -3$
 $-3 \times m_2 = -1$
 $y_{-5} = \frac{1}{3}x - \frac{2}{3}$
 $\frac{-3m_2}{-3} = \frac{-1}{-3}$
 $y_{-5} + 5 = \frac{1}{3}x - \frac{2}{3} + 5$
 $m_2 = \frac{1}{3}$
 $1 = 13$

4. Write the equation of a line that is parallel to 4x + 2y = -8 and has the same y -intercept

as -3y = -2x - 9. 4x + 2y = -8Parallel to 4x + 2y = -84x - 4x + 2y = -8 - 4x $::m_1 = m_2$ 2y = -4x - 8 $\therefore -2 = m_2$ $\frac{2y}{2} = \frac{-4x - 8}{2}$ $::m_2 = -2$ y = -2x - 4 $...m_1 = -2$ -3y = -2x - 9 $y - y_1 = m(x - x_1)$ $\frac{-3y}{-3} = \frac{-2x-9}{-3}$ y -3 = -2(x - 0) $y = \frac{-2x}{-3} - \frac{9}{-3}$ y - 3 = -2x + 0y - 3 + 3 = -2x + 3 $y = \frac{2x}{3} - -3$ y = 2x + 3 $y = \frac{2x}{3} + 3$ y-int = (0,3)(x₁, y₁)

5. A line passes through the points shown in this table. What is the slope of a line perpendicular to this line?

		v	1	3	5	7	
		X V	2	5	8	11	_
		L V					
(1 2)	(3 5)			y ₂ -y ₁		Perpe	ndicular
(1,2)	(3,3)			$m = \frac{1}{x_2 - x_1}$		$m_1 \times m_1$	n ₂ = -1
(x ₁ , y ₁)	(x ₂ , y ₂)			5-2		_	
				$m = \frac{3 - 2}{3 - 1}$		$\frac{5}{2} \times m_2$	=-1
				7		_	
				$m = \frac{3}{2}$		3	-1
						$\frac{2 \times m_2}{3}$	= 3
						2	2
						_	-7
						$m_2 = -\frac{1}{2}$	<u>-</u> 3

Exercise

1. What is the slope of a line perpendicular to 2y = -6x - 10?

2. Given 4y - 2x = 10 and -6y - 6 = 3x. are the lines parallel, perpendicular or neither?

- 3. What is the equation of a line that passes through the point (-1,-2) and is perpendicular to -5x = 6y + 18
 - ?

4. What is the equation of a line that is parallel to y = -4 and passes through the point (3,7)?

THE END