

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

	WORKSHEET 24
School: <u>Ba Sangam College</u>	Year / Level: <u>11</u>
Subject: Mathematics	Name of Student:
Strand	TRIGONOMETRIC GRAPHS
Sub strand	Sine, Cosine and Tangent Graphs
Content Learning Outcome	To sketch basic trigonometric graphs

Sine Graph

The Sine Function has this beautiful up-down curve (which repeats every 2π radians, or 360°). It starts at 0, heads up to 1 by $\pi/2$ radians (90°) and then heads down to -1.

Graph of Cosine

Cosine is just like Sine, but it starts at 1 and heads down until π radians (180°) and then heads up again.

Graph of Tangent Function

The Tangent function has a completely different shape ... it goes between negative and positive Infinity, crossing through 0 (every π radians, or 180°), as shown on this plot. At $\pi/2$ radians, or 90° (and $-\pi/2$, $3\pi/2$, etc) the function is officially undefined, because it could be positive Infinity or negative Infinity.

Graph of Sine x - with varying amplitudes

We start with $y = \sin x$. It has **amplitude** =1 and **period** = 2π . Now let's look at the graph of $y = 5 \sin x$. This time we have amplitude = 5 and period = 2π . (I have used a different scale on the y-axis.)

And now for $y = 10 \sin x$. Amplitude = 10 and period = 2π . For comparison, and using the same y-axis scale, here are the graphs of $p(x) = \sin x$, q(x) = 5 $\sin x$ and $r(x) = 10 \sin x$ on the one set of axes. Note that the graphs have the same **period** (which is 2π) but different **amplitude**.

Graph of Cosine x - with varying amplitudes Now let's see what the graph of $y = a \cos x$ looks like. This time the angle is measured from the positive vertical axis.

Now let's have a look at the graph of the simplest cosine curve, $y = \cos x$ (= 1 cos x)

We note that the **amplitude** = 1 and **period** = 2π . Similar to what we did with $y = \sin x$ above, we now see the graphs of

- $p(x) = \cos x$
- $q(x) = 5 \cos x$
- $r(x) = 10 \cos x$

on one set of axes, for comparison:

Note: For the cosine curve, just like the sine curve, the **period** of each graph is the same (2π) , but the **amplitude** has changed

Exercise 1 Sketch the graph of y = 2Sin

Exercise 2 Sketch the graph of $yx=3\cos^{-3}$