3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 21

SCHOOL: BA SANGAM COLLEGE SUBJECT: PHYSICS

YEAR: 13 NAME OF STUDENT: _

STRAND	STRAND 6: MAGNETIC FIELD
SUB-STRAND	6.2 Current carrying conductor
LEARNING	To calculate the force and magnetic field
OUTCOME	in a current carrying conductor

Forces between Parallel conductors

- When two wires carrying current are placed closed to each other will experience a force of either attraction or repulsion
- When the currents are in the **same direction**, the fields between the wires cancel each other. As a result, the wires are **attract**ed to each other
- When the current is in opposite direction then field add up and force is repulsion

The magnitude of the magnetic field strength created by conductor I2 is;

$$B_2 = \frac{\mu_o I_2}{2 \pi r}$$

Where:
$$\frac{\mu_0}{2\pi} = k = 2 \times 10^{-7} \text{ Tm.A}^{-1}$$

And the force per unit length of the conductor is;

$$\frac{\mathbf{F}}{l} = \frac{\mathbf{k} \, \mathbf{I}_1 \, \mathbf{I}_2}{\mathbf{r}}$$

Sangam Education Board – Online Resources

EXAMPLE

1. Two very long straight parallel wires carry currents of 15 A and 5.0 A. The wires are 10 cm apart. Determine the force per unit length.

$$\frac{F}{l} = \frac{k I_1 I_2}{r}$$
$$\frac{F}{l} = \frac{\left(2 \times 10^{-7}\right) (15)(5)}{0.1}$$
$$\frac{F}{l} = 1.5 \times 10^{-4} \text{ N m}^{-1}$$

2. Two parallel wires each of length 5m are placed at a distance of 10 cm apart in air. They carry equal currents along the same direction and experience a mutually attractive force of 3.6×10^{-4} N. Find the current through the conductors.

I₁ = I₂ = I
$$l = 5 \text{ m}$$
 $r = 10 \text{ cm} = 0.1 \text{ m}$ $F = 3.6 \times 10^{-4} \text{ N}$ I =?

$$F = \frac{\mu_0 I_1 I_2 l}{2\pi r} = \frac{\mu_0 I^2 l}{2\pi r}$$

$$\therefore I^2 = \frac{Fr}{kl} = \frac{3.6 \times 10^{-4} \times 0.1}{2 \times 10^{-7} \times 5} = 36$$
I=6 A

Hence $I_1 = I_2 = 6 A$

EXERCISE

- 1. A long straight wire carrying current produces a magnetic field of 4×10^{-6} T at a point, 15 cm from the wire. Calculate the current through the wire.
- 2. Two very long straight parallel wires carry currents of 10 A and 5.2 A as shown in the diagram below. The wires are 10.8 cm apart and point P is a point 5.0 cm from the wire carrying the 5.2 A and in the same plane as the two wires.
 - a) Determine the magnitude and direction of the magnetic field strength at point **P** due to
 - i. the 5.2 A current

10.8 cm 5.0 cm P Figure 6.11

10 A

- ii. the 10 A current
- b) What is the net field strength at P?

Now the direction of 10 A current is changed to left while the 5.2 A current remains in the same direction.

- c) Determine at P the magnitude and direction of the magnetic field strength due to
 - i. the 5.2 A current.
 - ii. the 10 A current.
- d) What is the net field strength at P?

Ampere's Law

It states that the line integral of the magnetic field around any closed path is the product of and the net current across the area bounded by the path $\int \mathbf{B} \cdot \mathbf{d} \mathbf{l}$ ie

Magnetic Fields due to Currents

Sangam Education Board – Online Resources

The magnetic fields of solenoid

Using Ampere's Law to find the magnetic field near the centre of a Solenoid;

 $\int \mathbf{B} \cdot \mathbf{d}l = \mathbf{B}l$


```
Where: N = number of turns in coil

l = Length of solenoid

\mu_0 = 4\pi \ge 10^{-7} \text{ TmA}^{-1}

n = number of turns per unit length
```

 $B = \frac{\mu_0 NI}{2\pi r}$

Note

Magnetic field outside the solenoid is zero and a stronger field is formed inside, centre of the coil.

EXAMPLE

Find the magnetic field strength at the centre of a solenoid 15 cm long, which consist of 200 turns of wire carrying a current of 4 A.

$$B = \frac{\mu_0 \text{ NI}}{l} = \frac{\left(1.26 \times 10^{-6}\right) (200) (4)}{0.15} = 6.72 \times 10^{-3} \text{ T}$$

Magnetic Field of Toroid

• The magnetic field inside is directed tangentially and with the magnitude depending on r, the field outside is zero. The magnetic field can be found by

 $\oint B.dl = \mu_0 I_c$

B = magnetic field (T)

From Ampere's Law

EXERCISE

- 1. A wooden ring of mean diameter 0.1 m is wound with a closely spaced **toroidal** winding of 500 turns. Compute the field at a point on the mean circumference of the ring when the current in the windings is 0.3 A.
- 2. A solenoid is 2m long and 3 cm in diameter. It has 5 layers of windings of 1000 turns each and carries a current of 5A. Find the magnetic induction at its centre along its axis

- 3. Calculate the magnetic field inside a solenoid 20 cm long, made from 500 turns of wire, carrying current of 5A.
 - 4. A closely wound coil-solenoid has a diameter of 18.0 cm carries a current of 2.50 A. How many turns does it have if the magnetic field at the centre of the coil is 4.19×10^{-4} T?
- 5. The Figure 6.16 shows a 2.00 m long solenoid that has 2000 loops and carries a 1600 A current.
 - a) Determine the number of units per length.
 - b) Calculate the magnetic field strength.

